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Abstract. By using the method proposed by Gomei and Sierra, I give the explicit expression 
of the intertwiner for semiperiodic representations of SU,(Z) when q.N = 1. The quantum 
Clebsch-Gordan coefficient for this case was also discussed. 

1. Introduction 

Recently, much more attention have been paid on the quantum group which is 
non-commutative and non-cocommutative ~~ Hopf algebra developed in statistical 
models. The physical.applications comprise lattice statistical models [I-51 and confor- 
mal field theory [6-91. There are deep relations  to^ other theory such as braid group 
which  has^ been related to fractional quantum Hall effect [lo]. 

One of the simplest examples of quantum groups is SU9(2), the deformation of 
SU(2), which is the hidden symmetry of minimal and SU(2) Wess-Zumio-Witten 
models w in conformal field theory [6,9] and of Heisenberg model with non-trivial 
boundary condition in statistical model [3]. In conformal field theory, the q-analogue 
of 6j symbol is related to the crossing and braiding properties of conformal blocks 
[6,9].  it is well known that SU9(2) with generic q has similar properties as SU(2) .  
The Racah and Clebsch-Gordan coefficients have been explicitly given [ll, 121. 

However, the physical interest one is the case q being a root of unit. The symmetries 
of most physical models are the quantum groups in this case. Mathematically, things 
become complicated. For SU9(2);the representations can be classified into four kinds 
[13]: ( a )  irreducible or regular representation which can be characterized by spin j as 
classical SU(2); ( b )  semiperiodic representation which has a non-zero parameter; (c) 
periodic or cyclic representation; ( d )  indecomposable representation. Forthermore, 
there is no expression of R-matrix, but only for pieces of R matrices ‘acting on a 
particular type of representation. It seems desirable to find the R-matrix satisfying the 
Yang-Baxter equation and the Clebsch-Gordan coefficients for semiperiodic rep- 
resentation of SUJ2). 

The R-matrix in this case can be obtained by solving an operator iterating equation 
which is derived from the axiom of quasi-triangular Hopf algebra. Gomez and Sierra 
[le151 proved the existence of the &-matrix satisfying the Yang-Baxter equation 
under the condition that the parameters characterizing two semiperiodic representations 
lie on an algebraic curve. This R-matrix can be used to construct a statistical model. 
In this paper, we use the method proposed by Gomez and Sierra to get the intertwiner 
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R and the Clebsch-Gordan coefficients for the semiperiodic representation of SUq(2). 
The programme is reviewing the algebra SU2(2) in section 2 and calculating the 
intertwiner R and giving the Clebsch-Gordan coefficients in sections 3 and 4 respec- 
tively. In the following we will think q as a root of unit ( q N  = 1, N odd). 

2. SUq(2) algebra 

SUq(2) algebra is a Hopf algebra with generators E, F and K which satisfy 
EF- q2FE 1 - K 2  

KE = q-'EK ( 1 )  
KF = q2FK 

the comultiplication is 
AE = E O l +  K O E  

AF= F O K - ' + I O F  (2) 
A K = K O K  

antipode y and co-unit E are 
y ( ~ )  = -K-'E y ( ~ )  = -K-'F y ( K ) =  K-' 
& ( E )  = E (  F )  = 0 E ( K )  = 1. (3) 

For case q N  = 1 ( N  odd), the central Hopf subalgebra is generated by x = E N ,  y = FN, 
z = K N  and casmir C = E F + [ H + 1 ] / 2 ( K = q H ) .  The representation of SUq(2) can 
be classified according to the values of x, y, z. Our interested one is so-called semiperi- 
odicrepresentation ( x  = 0, y, z # 0), which is an irreducible representation of dimension 
N. In this case, E is a nilpotent whereas F is an injective. So, the representation can 
be denoted by 5 = (y, A). It has a highest weight vector vo such that Evo = 0 and no 
lowest weight vector. The semiperiodic representation is given by the basis 
( u o , .  .. , vNJ [15,16] and 

Fup=k'"(l-Aqp)vp+l 

Ev, = k'"[p](l+AqP-')vp-~ (4) 
KV, = AqzPvp 

where k = l / ( l - A N )  and [ p ]  is the q-number 
1 - q z p  

[PI=-. 

For the convenience, we will use the notes introduced by Gomez and Sierra, which is 

In terms of this equation (4) can be written as 
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That quantum group SU9(2) is a quasitriangular Hopf algebra means the existence of 
a map~R 

(8) R : SUq(2)0SUq(2) + SU9(2)0SU9(2) 

which must satisfy 

RA(a)=A'(a)R (a E sUq(2)) (9) 

(10) 
( i d 0 A ) R  = Rl3RIz 
( A 0  id)R = R13RZ3 

where A'(a)  = U 0 A(a). Equation (10) meaqs that R satisfies the Yang-Baxterequation: 

RizR&3= R z ~ R I ~ R I z .  (11) 

For generic q, it has been shown that the universal R-matrix can be written ai . 

However, there is no expression for an universal R-matrix, but only for pieces of 
R matrices acting on particular type of representations in case q being root of unit: 
We will follow the method proposed in [15] to h d  the R-matrix for SUq(2). Now we 
only consider the intertwiner between two semiperiodic representations which ire 
characterized by 5, and tZ respectively. Assuming that the intertwiner satisfies the 
following condition 

1: R(5, ~ ) = I N c + N  normalization (13) 

3: R(&, &) =PR(&, &)E' reflection symmetry. (15) 
Generally, equations (10) and (14) uniquely determine an intertwiner R up to a constant 
which can be fixed by proper normalization. For the convenience, we may normalize 
it according to the action of R on the highest weight vector state eoOeo to be a 
permutation: 

R(&, 5z)eo(51) 0 e o ( t 2 )  = P(e0(&)0 eo(&)). ' (16) 

2: R(&, WW2, 5,) = INW unitarity (14) 

From equations (9) and (15), one can get an important relation 

R(&, Sz)PA,,,(a)P= p A d a ) p R ( 5 , ,  52) (17) 
here a E SUq(2). With the help of F" acting on the highest weight vector, one can get 
all vectors in the representation. So, we take the a in equations (9) and (17) as F from 
which one can find the iterating relation 

where A, B are given by 

A = A,,,(F) = F z 8  1 = KzOFl 
B = (u~h),~, ,  = 10 Fl+ FzO K,. 
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From equations (18) and (19), one find 

R(&,  &)(p?@E2)  

Applying the above equation to the highest weightvector e,([ ,)@ e,(e2), one can obtain 
the explicit form of R(&, C2) 

R ( ~ I ,  52)(F~eo(51)@~eo(52)Z)) 

. , ,  , ,  1 - - R' +rz- l  
i l o  (1-qz'A1A2) 

Expanding the left-hand side of equation (23 ,  one can find the matrix elements R$$ 
which will be given the next section. 

3. The explicit expression of intertwiner 

In the previous section, we give the operator form of intertwiner R. In order to lind 
the explicit expression of~R,  we must expand the left-hand side of equation (22) in 
term of F; 0 F;. De6ne two operators as 

M; = A- Af'B = F2@(1 - A1q2iK1)+(K2-hlq21)@ Fl (23) 

N; = B --hfA = Fz@(K,  - A2q2') +(1 -A2q2'K2)@ F1 (24) 
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and also define two functions $ and 6 as 

Substituting equations (27) and (28) into equation (22), one can find 

R(Sl, &KFTeo(&) @ F2eo(b) )  
. .  ='?[ 2 $:+~-~(s, ( A , ,  Az)&(s+rl+1-p, t + p - l ,  A,, A2) 

p = o  I=0 

(29) 

In order to find the elements of intertwiner R, one must get the functions defined 
in (27) and (28). It is convenient to graphic representation. The equations (25) and 
(26) can be depicted in figure 1 with factors on each edge as 

x r'+I!-l 1 21 e,+,(h)@e,+,,+,-,(S,)j. 

I=O l - q . A i A z  

(l-h2 2(i+L) ads, t )  = (Az)s.s+L 14 ) ~ '  
bi(s, t )  = ( A I ) ~ I + i ( A z 4 2 ~ - - h i q 2 i )  

CI (S ,  f )  = ( h z ) , . + l ( A , q 2 ' - - z q z i )  
d;(s, t )  ( A ~ ) ~ ~ ~ + , ( l - A ~ ~ 2 ' i + ~ ) ) .  

Then equations (27) and (28) can be depicted in figure 2. Every vertex stands for 
a vector state e. @e ,  (n, m), and every directed edge together with its factor represents 
the  linear^ relation in (27) and (28). All vertices at the same horizontal line has the 
same n + m, and the subindex ncm) decreases (increases) one by one from left to right. 
A path between two vertices is admissible if all edges. in it are along the path. From 
the top vertex to someone in the bottom, there are many admissible paths. Hence, we 
 have^ 

With the help of this hint, one can get the expression of $;+' as 

$!+'(s, t, A I ,  A d  

=E admissible path. (30) 
. ' 

j - 1  

i=o 
= (hz)~,r+p+i-j(hi),,f+j U ( A z q 2 " - A i q Z i )  

Figure 1. Representation of the relations (25)  and (26). 
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k+ p.1-j, t+jl 
Figure 2. Graph used for the calculation of Mi and Ni. 

The proof of the~above equation is direct calculation. From figure 2, we know that 
the admissible paths from ( s + p - j ,  t + j )  and ( s + p + l - j ,  t + j - 1 )  are uniquely 
determined by the edges with factor Q, and bp respectively. So we have 

@'(% 4 AI ,  Az) 

= ~ ~ ~ ~ , f A l , ~ 2 ) a p + ~ - l ~ ~ , t , ~ l . ~ 2 ) ~ p  

x { [ p + l - j ] ( l  - q 2 ( P + c + j ) A 2 ) + [ .  1 114 2 ( p - j + l ) ( l - q Z ( l + j - - l ) * 2  1)) 

it is easy to show that the right-hand side of the above equation coincides with one 
of (30). The function I@+' can be obtained by using the similar way. We do not repeat 
the procedure and only give the final result 

@+l(~, t , ~ , , ~ ~ ) = ~ + ~ ( ~ , t t ~ ~ , ~ t ) t ) .  (32) 
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In the above; ( x e y )  represents the permutation of xand y.  Substituting the equations 
(31) and (32) into (22) and taking care of the action of F on e,, we get the elements 
of intertwiner R 

r2+I.-1-1 
x (1-A:q") (1-A:q") 

j-,,+1-* j = w  

[ r l l ! [ r ~ l !  
X 
[ r,  + I - p ]  ! [p - l ] ! [ r z -  I ] ! [  I ]  ! (33) 

Now, we consider some special cases. The simplest two elements are 

The element RZ;"" appeared in [ 1 5 ] .  When N-approaches to 00, equation (33) gives 
a nontrivial.limit 

x ( 1  + n , ) ( i  - A ~ ) ~ ~ - ' I ( I  - ~ , ) ( i . +  A ~ ) ' Z ( A ~  - ~ , ) ' 2 - 5 ( ~ ,  - h, ) '~ .  (36) 

As pointed out in [ 1 5 ] ,  due to the non-&vial limit of comultiplication of the generators, 
this limit of R gives a infinite dimensional representation of braid group. From the 
calculation, the unitarity of R is obvious 

1 R$,~+%JA~,  A,)R?;;~~-+(A,, h2) = 8,,,;8%,;. (37) 
I. 

In principle the hexagonal equation for R can be shown from this explicit expression, 
but the calculation is very complicated and we do not want to do it here. 

4. Clebsch-Gordan coefficients 

The Clebsch-Gordan coefficients are very important in studying the decomposition of 
two irreducible representations. It has been shown that the tensor product of two 
semiperiodic representations of SUq(2) is completely reducible and can be decomposed 

. .  
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into the direct sum of semiperiodic representations [15,16]. The decomposed rules 
are given by 

N-1 

l=0 
(AI ,  yi)O(Az, Y z ) =  (q2'AiAz,Yi+ATY2). (38) 

This means that 

where K's are the Clebsch-Gordan coefficients for the semiperiodic representations. 
In order to find these coe5cients, we need to use the comultiplication of F. First, 
considering the highest weight vector eo@) of the semiperiodic representation .$(l) = 
( 8 A i A z ~ Y i z )  

A(K)eo(S(I)) =4e0(5 (0 )  

=E K~'~qz('~+'~)h,Aze,,(51)0 e,*(&) (40) 

(41) 

which gives that 

rI + rz = I mod N. 

Thus, the highest weight vector of f ( Z )  can be written as 

The operator A ( E )  acting on eo(f ( l ) )  give the following 

+ [ r2](1 + A2qr~-1)Alq2rle,,0 e,+)} = 0. (43) 
Because of the linear independence of e,,Qe,, one can find the recursion relation 
of K's 

K>+"2[ rl+ 1](1 +A,q'l) + K3'2+'[rZ+ 1](1+ hzqr~)A,qZr~ = 0 

(rI + r2+ 1 = I )  or (rl + r2+ 1 = N + I )  (44) 

. K," = KAN = 0. 

It is easy to find 

(Os r s I )  (45) 
1 

Kt-r=- ~- l )~A~q ' " - ' ) (A~)~ , (Az) i , i - ,  P I  ! 
and 

KLf"N-' -0 - (Os r s  N -  I ) .  

In fact, equation (44) was given in [15]. Hence equations (41), (44) and (45) give the 
highest weight vector. Consequently, the vectors with arbitrary weight can be obtained 
from the comultiplication A(F") acting on the highest weight vector eo(.$). A useful 
formula is 
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which acting on eo gives 

(47) x(A1) n+r--m 4 Zr(n+r--m) ( A I ) ~ , ~ ( A ~ ) I - ~ , I + ~ - ~ ]  

F(j, m, n )  = C [ m J  K~- ' (h l )"+ '~"z ' (n+ i -m)  ( A A r , m ( b ) ~ - r , ~ + n - m  

where AI = qZ1A,h2 and second summation over r must keep r, 1 - r, m - r and n - m + r 
be'positive or zero. Introducing a quantity 

(48) 

and making use of the relation = kef, one can find the explicit expression aS 

.~~ . .  
and 

KF1+n-m-N = w( I, m, n )  ( I +  n 3 N, O S  m s 1 + n - N )  
(50) ~~ 

K?+"- - - kF(1, m, n) , ( l+  n 3  N, N S  m S I +  n). 

It is worthy to note that although equations (49) and (50) have the similar form, indeed, 
the functions F(l,  m, n )  give the different expressions for parameters I ,  m and n at 
different areas. 

5. Discussion 

In quantum group, the intertwiner and Clebsch-Gordan coefficients have the following 
relation 

(51) wn,, nz)wn,, n2. n3) = w, , nl, n3w (U,, n2, n3) 
where 

nj :SUq(2) + End(V) (52) 

and r$ is a scale function. For V, being the irreducible SUq(2)-moduule with spin jj, 
the scale @ is 

. +j2-j, 4 j , ) - c C j l ) - d j J  

where~c(j) = j ( j + l )  is the classical casmir in y .  For semiperiodic representation in 
the case q3 = 1. Gomez et al have shown that the scale 4 is unit and presume that this 
is true for arbitrary N ( q N  = 1). In principle, one can use the expressions of R (33) 
and K (49) and (50) to prove the conjecture. But it is very complicated and we do 
not give the proof of it. 

(53) + ( j l , j 2 A = ( - - W  
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